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Abstract: We consider several problems of optimal resource allocation in telecommunication networks and show
that they can be formulated as market equilibrium models. This approach enables us to create simple and efficient
solution methods. Next, we consider such a resource allocation problem for a provider of a wireless communica-
tion network divided into zones (clusters). The network manager aims to distribute some homogeneous resource
(bandwidth) among users of several zones in order to maximize the total network profit, which takes into account
payments from users and implementation costs. As a result, we obtain a convex optimization problem involving
capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint,
we reduce the initial problem to a suitable one-dimensional problem, so that calculation of its cost function value
leads to independent solution of zonal problems, treated as two-side market equilibrium models with one trader.
We show that solution of each zonal problem can be found exactly by a simple arrangement type algorithm even
in the case where the trader price is not fixed. Besides, we suggest ways to adjust the basic problem to the case of
moving nodes. Some results of computational experiments confirm the applicability of the new method.

Key–Words: Resource allocation, wireless networks, bandwidth, market equilibrium models, convex optimization,
Lagrangian duality method, decomposition, non fixed prices.

1 Introduction
The current development of telecommunication sys-
tems creates a number of new challenges of effi-
cient management mechanisms for efficient alloca-
tion of limited communication networks resources.
In fact, despite the existence of powerful processing
and transmission devices, increasing demand of dif-
ferent communication services and its variability lead
to serious congestion effects and inefficient utiliza-
tion of network resources (e.g., bandwidth and bat-
teries capacity), especially in wireless telecommuni-
cation networks. This situation forces one to replace
the fixed allocation rules with more flexible mecha-
nisms, which are based on proper mathematical mod-
els; see e.g. [1]–[3]. The problem is to suggest
such models and to develop suitable solution meth-
ods. Usually, the decision making processes are based
on solutions of the corresponding optimization prob-
lems. At the same time, experience of dealing with
these very complicated and spatially distributed sys-
tems usually shows that these problems have to utilize
a proper decomposition/clustering approach, which
can be based on zonal, time, frequency and other at-

tributes of nodes/units; see e.g. [4, 5].

In this paper, we consider some problems of opti-
mal allocation of a homogeneous resource in telecom-
munication networks such that the income received
from users payments is maximized and the implemen-
tation costs of the network operator are minimized.
We show that market equilibrium models suggested
in [6, 7] can serve as a basis for these problems and
enable us to create simple and efficient solution meth-
ods. We consider two-side equilibrium models with
fixed prices. Being based on these properties, we con-
sider a more general resource allocation problem for
a provider of a wireless communication network di-
vided into zones (clusters); which was formulated as
a convex optimization problem in [8, 9]. Here the
network manager problem consists in optimal distri-
bution of the resource shares among zones in order
to maximize the total network profit. This optimiza-
tion problem involves capacity and zonal balance con-
straints. Unlike [8, 9], we suggest to apply the dual
Lagrangian method with respect to only capacity con-
straint. This reduces the initial problem to a suit-
able one-dimensional problem, where calculation of

WSEAS TRANSACTIONS on COMMUNICATIONS Igor Konnov, Aleksey Kashuba, Erkki Laitinen

E-ISSN: 2224-2864 309 Volume 15, 2016



its cost function value leads to independent solution
of zonal problems, treated as above two-side market
equilibrium models with one trader. We show that so-
lution of each zonal problem can be found exactly by
a simple arrangement type algorithm even in the case
where the trader price is not fixed. In such a way we
develop a new dual decomposition approach for solu-
tion finding, whose implementation is simpler essen-
tially in comparison with the methods from [8, 9]. We
present results of computational experiments which
confirm the applicability of the new method.

2 A single commodity market equi-
librium model

For the sake of clarity of exposition, we first describe
a simple market equilibrium model, which was sug-
gested in [6, 7]. The model involves a finite number
of traders and buyers of a homogeneous commodity,
their index sets will be denoted by I and J , respec-
tively. For each i ∈ I , the i-th trader chooses his/her
offer volume xi ∈ [0, ai] and has price function gi.
Similarly, for each j ∈ J , the j-th buyer chooses
his/her bid volume yj ∈ [0, bj ] and has price function
hj . Then we can define the feasible set of volumes

D =

(x, y)

∑
i∈I

xi =
∑
j∈J

yj ;

0 ≤ xi ≤ ai, i ∈ I,
0 ≤ yj ≤ bj , j ∈ J

 , (1)

where x = (xi)i∈I , y = (yj)j∈J . We suppose that the
prices may in principle depend on offer/bid volumes
of all the participants, i.e. gi = gi(x, y) and hj =
hj(x, y). We say that a pair (x̄, ȳ) ∈ D constitutes
an equilibrium point if (x̄, ȳ) ∈ D and there exists a
number λ̄ such that

gi(x̄, ȳ)


≥ λ̄ if x̄i = 0,
= λ̄ if x̄i ∈ (0, ai),
≤ λ̄ if x̄i = ai,

for i ∈ I;

(2)

and

hj(x̄, ȳ)


≤ λ̄ if ȳj = 0,
= λ̄ if ȳj ∈ (0, bj),
≥ λ̄ if ȳj = bj ,

for j ∈ J.

(3)

Observe that λ̄ is a market clearing price, which equi-
librates the market. In fact, the minimal offer (bid)
volumes correspond to traders (buyers) whose prices
are greater (less) than λ̄, and the maximal offer (bid)
volumes correspond to traders (buyers) whose prices

are less (greater) than λ̄. The prices of other partic-
ipants are equal to λ̄ and their volumes may be arbi-
trary within their capacity bounds, but should be sub-
ordinated to the balance equation.

In [6] (see also [7, 10]), the following basic re-
lation between the equilibrium problem (1)–(3) and a
variational inequality (VI, for short) was established.

Proposition 1 (a) If (x̄, ȳ, λ̄) satisfies (2)–(3) and
(x̄, ȳ) ∈ D, then (x̄, ȳ) solves VI: Find (x̄, ȳ) ∈ D
such that∑

i∈I
gi(x̄, ȳ)(xi − x̄i)−∑

j∈J
hj(x̄, ȳ)(yj − ȳj) ≥ 0

∀(x, y) ∈ D. (4)

(b) If a pair (x̄, ȳ) ∈ D solves VI (4), then there
exists λ̄ such that (x̄, ȳ, λ̄) satisfies (2)–(3).

Therefore, we can apply various results from the the-
ory of VIs or more general equilibrium problems (see,
e.g., [7]) for its investigation and solution.

However, we feel that the model is essentially in-
complete without the indication of an implementation
mechanism for attaining the equilibrium point defined
above, which is clearly attributed to a suitable infor-
mation exchange scheme.

In [6, 7], the auction market mechanism was de-
scribed, where all the traders and buyers submit their
offers and bids (prices and capacities) to an auction
manager within a fixed time period (session). After
closing the session, the manager determines the cut-
ting price and reports it to the participants, which also
yields all the actual commodity volumes.

In the potential case where prices are partial
derivatives of some differentiable function f , i.e.

gi(x, y) =
∂f(x, y)

∂xi
, i ∈ I; and

hj(x, y) = −∂f(x, y)

∂yj
, j ∈ J ;

VI (4) is rewritten as follows:

〈∇f(x̄, ȳ), (x, y)− (x̄, ȳ)〉 ≥ 0 ∀(x, y) ∈ D;

and it yields the optimality condition for the optimiza-
tion problem:

min
(x,y)∈D

→ f(x, y). (5)

This is the case if the price functions are separable,
i.e. gi(x, y) = gi(xi) for each i ∈ I and hj(x, y) =
hj(yj) for each j ∈ J . Then, gi(xi) = µ′i(xi) and
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hj(yj) = ηj(yj) where µi and ηj are treated as utility
functions of the participants and

f(x, y) =
∑
i∈I

µi(xi)−
∑
j∈J

ηj(yj) (6)

gives the total profit of the system; see, e.g., [11].
Note that problems (4) and (5) are equivalent if the
function f is convex. Problem (5)–(6) can be solved
within the centralized planning scheme, where some
upper level unit is able to receive the necessary in-
formation for this optimal allocation of network re-
sources.

Moreover, it was shown in [11] that the same
equilibrium solution of (4) can be attained by a com-
pletely decentralized mechanism of bilateral transac-
tions.

The preference of all these mechanisms related
to equilibrium problem (1)–(3) is that they admit im-
plementation with minimal information requirements,
which is very significant for telecommunication net-
work applications. In fact, we can treat (1)–(3) as a
telecommunication network resource allocation prob-
lem including several providers (traders) and many
users (buyers) with their maximal capacity values ai
and bj . The price functions of providers must cover
their implementation costs, whereas users indicate
their willingness to pay for the service in these func-
tions. In such a way, (1)–(3) yields a solution of this
problem, which can be found within different mecha-
nisms.

We however have to describe rather rapid and
simple iterative methods which can be applied for cal-
culation of this solution. We give several illustrative
examples in the next section.

3 Simple models and methods

First we take the previous two-side model (1)–(3) in
the case where all the prices are fixed, i.e., gi(x, y) =
αi for each i ∈ I and hj(x, y) = βj for each j ∈
J . Then (5)–(6) becomes a linear programming (LP)
problem since

f(x, y) =
∑
i∈I

αixi −
∑
j∈J

βjyj .

It follows that one can find very easily an exact so-
lution of this problem in a finite number of iterations
by a simple ordering algorithm. One should rearrange
the sellers indices such that i < j implies αi ≤ αj and
rearrange the buyers indices such that i < j implies
βi ≥ βj . Then one finds any intersection point for
staircase supply (ascending) and demand (descend-
ing) lines, which gives the desired clearing price; see
Figure 1.

Figure 1: The ordering method in the case of fixed
prices.
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Figure 2: The ordering method for the case of one
trader.
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The problem becomes simpler in case of only one
trader. As above, we suppose that all the prices are
fixed, i.e., g1(x, y) = α and hj(x, y) = βj for each
j ∈ J . Then both (4) and (5)–(6) coincide with the
LP problem

min
(x,y)∈D

→ αx−
∑
j∈J

βjyj . (7)

where

D =

(x, y)

x =
∑
j∈J

yj ;

0 ≤ xi ≤ a,
0 ≤ yj ≤ bj , j ∈ J

 , (8)

If α is the network expense for a resource unit,
then (7)–(8) is the network manager problem of the
provider profit maximization. That is, the solution
may be found within the centralized planning scheme.
Again, it can be calculated very easily by a simple
ordering algorithm. Here, we should re-arrange only
buyers’ prices to be non-increasing and then find eas-
ily an intersection point of the staircase-wise common
demand and supply lines; see Figure 2.
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Figure 3: The case of one trader with linear price.
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If the network expense of some quantity x is de-
termined by a non-linear function f(x), the network
manager problem becomes

min
(x,y)∈D

→ f(x)−
∑
j∈J

βjyj . (9)

where D is defined in (8). If the function f is convex
and smooth, then (9)–(8) becomes equivalent to VI:
Find (x, y) ∈ D such that

f ′(x̄)(x− x̄)−
∑
j∈J

βj(yj − ȳj) ≥ 0 ∀(x, y) ∈ D.

(10)
cf. (4). Again, we can find its solution by using
the above ordering of buyers’ prices. Similar mod-
els with a solution algorithm were considered in [12].
The illustration for the case of the linear marginal cost
function f ′(x) is given in Figure 3. Therefore, all
these problems admit very efficient and simple solu-
tion methods.

4 Multi-zonal network problem

Let us consider a more general model where a
telecommunication network with nodes attributed to
users (consumers) is divided into several zones (clus-
ters). The problem of a manager of the network is
to find the optimal allocation of a limited homoge-
neous network resource among the zones. That is,
the optimal shares should maximize the value of the
total profit containing the total income received from
consumers’ fees and negative resource implementa-
tion costs.

Let us use the following notation:
◦ n is the number of zones;

◦ Jk is the index set of users (currently) located in
zone k (k = 1, . . . , n);

◦ B is the total resource supply (the total bandwidth)
for the system (network);

◦ xk is an unknown quantity of the resource allotted
to zone k with the upper bound ak and fk(xk) is
the cost of implementation of this quantity of the
resource for zone k (k = 1, . . . , n);

◦ yj is the resource amount received by user j with the
upper bound bj and ϕj(yj) is the charge value paid
by user j for the resource value yj .

The problem of the network manager can be writ-
ten as follows:

max→ µ(x, y) =
n∑
k=1

∑
j∈Jk

ϕj(yj)− fk(xk)

 ,
(11)

subject to ∑
j∈Jk

yj = xk, k = 1, . . . , n; (12)

0 ≤ yj ≤ bj , j ∈ Jk, k = 1, . . . , n; (13)
n∑
k=1

xk ≤ B; (14)

0 ≤ xk ≤ ak, k = 1, . . . , n. (15)

That is, (12) provides the balance for demand and sup-
ply in each zone, (13) and (15) are capacity constraints
for users and network supply values in each zone, re-
spectively, and (14) gives the upper bound for the to-
tal resource supply. The goal of the network manager
is to maximize the total network profit subject to all
these constraints.

In what follows we assume that there exists at
least one feasible point satisfying conditions (12)–
(15), each function fk(xk) is convex and differen-
tiable, and all the functions ϕj(yj) are affine, i.e.

ϕj(yj) = βjyj + γj , βj > 0, j ∈ Jk, k = 1, . . . , n.
(16)

This means that the prices (marginal utilities) βj of the
users are fixed, but the manager can vary the prices
depending on volumes, so that each zonal price is a
non-increasing function.

5 Dual solution method

Under the basic assumptions of the previous sec-
tion, (11)–(15) is a differentiable convex optimization
problem, which has a solution since its feasible set
is bounded. Hence it can be found by a great num-
ber of iterative methods; see e.g. [13, 14]. However,
the problem of selection of an efficient decomposition
method here is not trivial task since problem (11)–
(15) has n+1 functional constraints (12) and (14) and
many box type ones. For instance, we can utilize the
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standard duality approach and define the Lagrangian
function with respect to all the functional constraints:

Λ(x, y, u, v) = µ(x, y)− u
(

n∑
k=1

xk −B
)

−
n∑
k=1

vk

∑
j∈Jk

yj − xk


Then we can write the dual problem:

min
u≥0,v∈Rn

→ θ(u, v), (17)

where

θ(u, v) = sup
(x,y) ∈ H

Λ(x, y, u, v)

and

H =

{
(x, y)

0 ≤ yj ≤ bj , j ∈ Jk,
0 ≤ xk ≤ ak, k = 1, . . . , n

}
.

By duality (see e.g. [13, 14]), problems (11)–(15)
and (17) have the same optimal value. Problem (17)
has simple constraints, calculation of the value of the
cost function θ(u, v) is rather simple since it reduces
to several independent one-dimensional optimization
problems, moreover, this function is convex. How-
ever, θ(u, v) is non-smooth in general, hence we re-
place here problem (11)–(15) with a non-smooth con-
vex optimization problem (17) in n+1 dual variables,
whose solution may cause certain difficulties. For
this reason, we intend to apply a special dual method,
which takes into account peculiarities of this problem
and does not require hard implementation procedures.

Let us now define the other Lagrange function of
problem (11)–(15) as follows:

L(x, y, λ) = µ(x, y)− λ
(

n∑
k=1

xk −B
)
,

i.e. we insert only the term corresponding to the the
upper bound constraint for the total resource supply
(14) with the Lagrangian multiplier λ. At the same
time, we keep the zonal balance constraints (12) as
well as the box capacity constraints (13) and (15).

Hence, we can write the one-dimensional dual
problem:

min
λ≥0
→ ψ(λ), (18)

where

ψ(λ) = sup
(x,y) ∈ W

L(x, y, λ)

= sup
(x,y) ∈ W

n∑
k=1

∑
j∈Jk

ϕj(yj)− fk(xk)− λxk


+λB;

and

W =

(x, y)

∑
j∈Jk yj = xk,

0 ≤ yj ≤ bj , j ∈ Jk,
0 ≤ xk ≤ ak, k = 1, . . . , n

 .
By duality (see e.g. [13, 14]), problems (11)–(15) and
(18) also have the same optimal value. However, so-
lution of (18) can be found by one of well-known one-
dimensional optimization algorithms based on calcu-
lation of values of ψ(λ). We now discuss this prob-
lem in more detail. The main element in calculation
of ψ(λ) is a solution of the problem:

max→
n∑
k=1

∑
j∈Jk

ϕj(yj)− fk(xk)− λxk

 (19)

subject to∑
j∈Jk

yj = xk, 0 ≤ yj ≤ bj , j ∈ Jk,

0 ≤ xk ≤ ak, k = 1, . . . , n.

However, this problem decomposes into n indepen-
dent zonal convex programming problems

max→

∑
j∈Jk

ϕj(yj)− fk(xk)− λxk

 (20)

subject to ∑
j∈Jk

yj = xk, 0 ≤ yj ≤ bj , j ∈ Jk,

0 ≤ xk ≤ ak,

for k = 1, . . . , n; cf. (9). Hence, we have to suggest
a simple and efficient algorithm for the basic problem
(20).

Set y(k) = (yj)j∈Jk ,

Wk =

(xk, y(k))

∑
j∈Jk yj = xk,

0 ≤ yj ≤ bj , j ∈ Jk,
0 ≤ xk ≤ ak

 ,
then

W =
n∏
k=1

Wk.

The necessary and sufficient optimality condition for
problem (20) in view of (16) is written in the form of
VI: find (x̄k, ȳ(k)) ∈ Wk such that

(f ′k(x̄k) + λ)(xk − x̄k)−
∑
j∈Jk

βj(yj − ȳj) ≥ 0

∀(xk, y(k)) ∈ Wk.
(21)
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This is nothing but the two-sided market equilibrium
problem with one trader and several buyers; see (4)
and (10). Due to Proposition 1, it is equivalent to the
problem of finding a feasible vector (x̄k, ȳ(k)) ∈ Wk

and a cutting price p̄k such that

f ′k(x̄k) + λ


≥ p̄k if x̄k = 0,
= p̄k if x̄k ∈ (0, ak),
≤ p̄k if x̄k = ak,

(22)

and

βj


≤ p̄k if ȳj = 0,
= p̄k if ȳj ∈ (0, bj),
≥ p̄k if ȳj = bj ,

j ∈ Jk; (23)

cf. (1)–(3). As indicated in Section 2, since buyers’
prices are fixed, we can re-arrange them to be non-
increasing and then find easily an intersection point
of the staircase-wise inverse common demand and of-
fer price f ′k(xk) + λ lines; see also Figure 3. There-
fore, an exact solution of problem (21), (22)–(23),
or (20) (hence (19)) can be found explicitly by sim-
ple ordering type algorithms, although (20) contain a
non-linear function in general. In other words, cal-
culation of values of ψ(λ) can be accomplished by
several independent simple ordering type algorithms.
Notice that the re-arrangement of bid prices βj in
each zone should be made only one time that reduces
the computational expenses essentially in comparison
with the general duality approach. So, having the op-
timal value λ∗ of problem (18), we can find a solution
of problem (11)–(15) by solving problem (19) with
λ = λ∗, i.e. it is accomplished within the main calcu-
lation process for (18).

6 Adjustment for the case of moving
nodes

In the above model it was assumed that users loca-
tions were fixed. We now intend to suggest some ad-
justments of the above model to networks with more
complex and non-stationary behavior of users (nodes),
which is typical for various modern wireless telecom-
munication systems; see e.g. [15, 2].

We consider the above problem of the network
manager for some time slot. In this case we need
some additional information about the behavior of
users (nodes). It was suggested by I. Konnov (see e.g.
[16]) to treat each moving node in a wireless network
as a separate Markovian chain.

In order to create such a model, we determine a
suitable grid G covering the domain of the network so
that Gk denotes the index set of all the cells belonging

to zone k. Next, we consider the discrete time model
and suppose that, given a user (node) j, we can de-
termine the starting probability vector πj,(0), whose
components πj,(0)σ give its probabilities to be in cell
σ ∈ G by time slot (stage) 1, and the probability π̃jστ
(for the simplicity of exposition, it is supposed to be
independent of time) of the one stage transition σ → τ
for each pair σ, τ ∈ G. Knowing the starting and tran-
sition probability vectors for each node j, we can cal-
culate its probability πj,(t−1)σ to be in cell σ ∈ G by a
selected slot t via the standard Markovian chain tech-
nique (see e.g. [17]). Afterwards we calculate the
value

p̃
j,(t−1)
k =

∑
σ∈Gk

πj,(t−1)σ

for each zone k and assign user j to zone l where the
probability p̃j,(t−1)l is maximal, i.e. then j ∈ Jl.

Therefore, we can solve the same problem (11)–
(15) with this assignment and obtain the desired re-
source allocation for time slot t in the case of moving
nodes.

Similarly, if

lim
m→∞

(Πj)m = Π̄j (24)

for each probability matrix Π̃j = (π̃jστ ){σ,τ∈G}, be-
havior of each user is stable and we can evaluate the
optimal resource allocation for a long-time stationary
period by calculation of the limit probabilities

π̄jτ =
∑
σ∈G

πj,(0)σ π̄jστ for τ ∈ G

and set
p̄jk =

∑
σ∈Gk

π̄jσ

for each j. Then we can assign user j to zone l where
the probability p̄jl is maximal, i.e. then j ∈ Jl and
solve problem (11)–(15) with this assignment and ob-
tain the long-time resource allocation strategy.

However, this approach can not be used if the
limit in (24) does not exist. Then we can apply the
statistical approach and calculate the probabilities on-
line as it was suggested in [18]. After t time slots we
can determine the value

pj,tk = sj,k(t)/t,

for each user j and for each zone k, where sj,k(t) de-
notes the number of time slots when user j was in zone
k. It is treated as some approximation of the probabil-
ity of user j to be in zone k. We set

p̄jk = pj,tk
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if ∑
j∈J

n∑
k=1

(pj,tk − p
j,t−1
k )2


1/2

≤ δ

for δ > 0 small enough, where J denotes the index set
of all the users. Then we utilize the values p̄jk as above
in order to assign each user j to some zone l. Solution
of problem (11)–(15) with this assignment gives the
long-time resource allocation strategy.

7 Numerical experiments

In order to evaluate efficiency of the new method
we made several series of computational experiments.
Since the case of moving nodes yields the same math-
ematical model (11)–(15) we restricted ourselves with
the fixed case.

We utilized the golden section method for solv-
ing the single-dimensional optimization problem (18).
The programs were coded in C++ with a PC with the
following facilities: Intel(R) Core(TM) i7-4500, CPU
1.80 GHz, RAM 6 Gb.

The initial intervals for choosing the dual variable
λ were taken as [0,1000]. Values of ak were cho-
sen by trigonometric functions in [1, 11], values of bj
were chosen by trigonometric functions in [1, 2]. The
functions fk(xk) were chosen to be convex quadratic,
all the coefficients of fk(xk) and ϕj(yj) were chosen
with the help of trigonometric functions. The number
of zones was varied from 5 to 105, the number of users
was varied from 210 to 1010. Users were distributed
in zones either uniformly or according to the normal
distribution. The processor time and number of itera-
tions, which gave an approximate solution of problem
(18) within the same accuracy, were not significantly
different for these two cases of distributions. We made
calculations with 1000 test examples for each set of
parameters, their average values are indicated in each
row of the tables.

Further we report the results of tests, which in-
clude the time and number of iterations needed to find
a solution of problem (18) within some accuracies.
Let ε and δ denote the desired accuracy of finding an
approximate solution of problem (18). Let M denote
the total number of users, Nε the number of upper it-
erations in λ, Tε the total processor time in seconds.
The results of computations are given in Tables 1–3.
In Table 1, we vary the accuracy ε, in Tables 2 and 3
we vary the total number of users and the number of
zones, respectively. From the results we can conclude
that the performance of the new method is satisfactory
for applications.

Table 1: Results of testing with M = 510, n = 70,
δ = 10−2

ε Nε Tε
10−1 20 0.0003
10−2 24 0.0004
10−3 29 0.0008
10−4 34 0.0007

Table 2: Results of testing with n = 70, ε = 10−2,
δ = 10−2.

M Nε Tε
210 24 0.0001
310 24 0.0003
410 24 0.0004
510 24 0.0004
610 24 0.0008
710 24 0.0012
810 24 0.0011
910 24 0.0014
1010 24 0.0018

Table 3: Results of testing with M = 510, ε = 10−2,
δ = 10−2.

n Nε Tε
5 24 0.0001
15 24 0.0002
25 24 0.0001
35 24 0.0001
45 24 0.0002
55 24 0.0002
65 24 0.0002
75 24 0.0002
85 24 0.0003
95 24 0.0004
105 24 0.0002
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8 Conclusions

In this work, we showed that market equilibrium mod-
els suggested in [6, 7] can serve as a basis for resource
allocation problems in telecommunication networks
and enable us to apply simple and efficient solution
methods. We also considered a problem of managing
limited resources in a multi-zonal wireless telecom-
munication network and gave its constrained convex
optimization problem formulation. We proposed a
new dual decomposition method, which reduces the
initial problem to a sequence of simple zonal convex
optimization problems. Each of these problem cor-
responds to a two-side market equilibrium model and
can be solved by efficient ordering type algorithms de-
spite the nonlinear cost network functions. The results
of the numerical experiments confirmed the rapid con-
vergence of these methods. We also suggested ways
to adjust the problem to the case of moving nodes.
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